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In this research, the feasibility of utilizing visible/near-infrared (Vis/NIR) spectroscopy as an optical non-destructive
technique combined with both supervised and unsupervised pattern recognition methods was assessed for detec-
tion of Ectomyelois ceratoniae, carob moth, infestation in pomegranates during hidden activity of the larvae. To
this end, some fruits were artificially contaminated to the carob moth larvae. Vis/NIR spectra of the blank samples
and the contaminated pomegranates without and with external visual symptoms of larvae infestation were
analyzed one and twoweeks after contaminating the samples as three groups of “Healthy”, “Unhealthy-A” and “Un-
healthy-B”, respectively. Principal component analysis (PCA) as unsupervised pattern recognitionmethodwas used
to verify the possibility of clustering of the pomegranate samples into the three groups. Discriminant analysis (DA)
based on PCA was also used as a powerful supervised pattern recognition method to classify the samples. The
calibration models of linear, quadratic and Mahalanobis discriminant analyses were developed based on different
spectral pre-processing techniques. The best PCA-DA model was obtained using Mahalanobis distance method
andfirst derivative (D1) pre-processing. The total percentage of correctly classified sampleswith the best calibration
model was 97.9%. The developed model could also predict unknown samples with total percentage of correctly
classified samples of 90.6%. It was concluded that Vis/NIR spectroscopy combined with pattern recognition method
of PCA-DA can be an appropriate and rapid technology for non-destructively screening the pomegranates for detec-
tion of carob moth infestation during hidden activity of the larvae.
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1. Introduction

The carob moth, Ectomyelois ceratonia Zell. (Lepidoptera: Pyralidae),
is a destructive worldwide polyphagous insect and the most important
pest of pomegranate (Punica granatum) in theMiddle East, especially in
Iran, attacking the fruits before and after harvest and causing 30–80
present yield losses. Chemical insecticides are not applicable for control-
ling this pest because of the hidden activity of the larvae. Non-chemical
control methods which are currently used, have no sufficient efficiency.
This pest normally lays eggs inside the crown, calyx, of pomegranates.
Larvae penetrate into the fruit after hatching. The damage caused by lar-
vae, especially from second or third age, on the fruit is due to their feed-
ing from internal parts of pomegranate without external symptoms.
This causes penetration of pathogenic fungi such as Aspergillus and Pen-
icillium which makes the fruits unmarketable and unfit not only for
human consumption but also for the food processing industries [1–4].
Sometimes, the appearance of black spots on the pomegranate is the
first symptom of carob moth infection and the beginning of fruit
decaying process [4]. However, there is mostly no external visual symp-
tom during hidden activity of the larvae inside the fruit to detect
infested pomegranates. Thus, the pomegranateswith hidden infestation
may pass undetected in packing houses and processing lines. They may
damage the surrounding healthy fruits during storage. Moreover, the
existence of hidden contamination in pomegranates is a vital challenge
for the exportation. Therefore, development of a fast and non-
destructive detection technique of infested pomegranates is imperative.

Few publications have addressed the use of some non-destructive
techniques for the detection of internal insects and insect infestation
on pomegranates. The feasibility of using X-ray computed tomography
(CT) coupled with image analysis has been investigated by Magwaza
and Opara [5] for non-destructive detection internal structure of pome-
granates. Arendse et al. [6] investigated the application of micro-focus
X-ray CT (μCT) using a density calibration function for non-destructive
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Fig. 1.Contaminating the samples to the carobmoth larvae. The pomegranates after cutting the above edges of the calyx and removing the stamen clusters of it (a). Putting the carobmoth
larva of second age into the calyx after creating a small hole (b). The closed calyx with a small mesh piece after contaminating the sample to the carob moth larva (c).
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detection of internal defects caused by false codling moth and black-
heart in pomegranates. Although X-ray CT scanning technique provides
promising results to detect the presence of internal insect larva, disease
infestation and disorders, it is not economic and practical for in/on-line
applications. This technique is considerably complex and expensive
comparedwith other non-destructivemethods. Health and safety issues
may arise due to harmful effects of the radiation. In addition, safety of
operators, considerable large equipment size and time required for
tests, data acquisition, processing and analysis, are of concern [5–9].
Nuclearmagnetic resonance spectroscopy (NMR) and nuclearmagnetic
resonance imaging (MRI) have been shown to be effective techniques
for non-destructive internal structure and quality assessment in pome-
granates [10–12]. Although NMR-based techniques promise good
results to discriminate healthy and defective fruits, they are less sensi-
tive than other analytical methods. NMR systems are not economic
and practical for in/on-line use in fruit packing houses because of the
high-cost constraints, complexity and potential health hazard due to
maintenance of magnetic [7].

Near-infrared (NIR) spectroscopy is one of themost promising non-
destructive methods which is flexible for food qualitative and quantita-
tive analyses especially for fruits. While NMR and X-ray CT techniques
are able to show only the internal structure of the fruit, not the compo-
sitional or nutritional details, NIR spectroscopy is very successfully
being used to measure the compositional quality of a fruit [13]. It is
rapid, safe, non-contaminant and can be used in processing lines
[14,15]. Compare to NMR and X-ray CT systems, NIR spectroscopy tech-
nique is very low-cost. Visible/near-infrared (Vis/NIR) andNIR spectros-
copy have been widely used for rapid internal quality and safety
assessment and chemical compounds prediction of both thin-rind and
thick-rind fruits [16–23]. Few works have recently addressed the use
of these techniques for detection of internal insect larvae or insect
infestation in fruits such as tart cherries [9], wild blueberries [24],
Mangoes [25], jujubes [26,27], Chestnuts [28,29] and olives [30,31]. All
these researches confirm the possibility and reasonability of detection
Fig. 2. Spectra acquisition of a blank sample at the position around and near the calyx (a). Vis/N
pross with the carob moth larvae (b).
of hidden insect infestation in such fruits using NIR-based spectroscopy.
Relating to pomegranate fruit, it is more difficult to detect hidden
infestation especially in primary stages because of the complexity and
variety of internal different parts. In spite of that, good results have
been reported by Khodabakhshian et al. [32] on carobmoth damage de-
tection in pomegranates (Ashraf variety) during four maturity stages
using reflectanceVis/NIR spectroscopy. In their research, the pomegran-
ates containing different infection levels were selected based on visual
observation of the symptoms of defect on fruit at each maturity stage.
However, there is mostly no external visual symptom during hidden
activity of the larvae inside the fruit. Moreover, selecting the infested
pomegranates based on visual observation is not a precise method for
confidence about the carob moth infestation and the symptoms may
be due to other factors.

This research aims to investigate the capability of Vis/NIR spectros-
copy based on both supervised and unsupervised pattern recognition
techniques for non-destructive detection of internal carobmoth infesta-
tion in the harvested pomegranates (Malas Saveh, an export variety)
during hidden activity of the larvae inside the fruits without any symp-
tom until the appearance of the symptoms on them for the first time. To
be sure about the contamination of the pomegranates to the carobmoth
no other insects' larvae, fruits were artificially contaminated to the
carob moth larvae. To reduce the rind color effect of the fruit on detec-
tion results, the spectroscopy measurements were conducted in the
interactance mode.

2. Materials and Methods

2.1. Pomegranate Samples

Pomegranate samples (cv. Malas Saveh with red aril, thin-rind and
sour-sweet delicious taste) which were free from external defects and
symptoms of insect infestation were prepared during October 2017
from the pomegranate orchards in Saveh region, central part of Iran.
IR absorbance spectra of all healthy samples and unhealthy pomegranates during decaying



Fig. 4. The mean spectra for three groups of the pomegranates.

Fig. 3. The influence plot of the samples to detect outliers.
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The fruits were stored in 18 °C and appropriate humidity for 6 days to
appear any symptom if they had any hidden insect infestation. After
that, a total of 70 safe and healthy pomegranate fruits with similar
color, size and shape were selected for the experiments. Ten of the
pomegranates were labeled as blank samples and the remained fruits
were contaminated to the carob moth larvae artificially.

2.2. Contaminating the Samples to Carob Moth Larvae

First, the above edges of the calyx in the pomegranates except the
blank samples were cut with a cutter (after cleaning it up with alcohol)
to make a flat edge. Then, the stamen clusters were removed from the
calyx. A thin metal rod with a sharp point on the end (after cleaning it
up with alcohol) was used to create a very small hole in the calyx of
the pomegranates for fast penetrating the larvae into the fruit. The
carob moth larva of second age, the best age for penetration into the
fruit and causing more damages, with 2–4 mm length and after 24 h
of starvation were put into the calyx of each fruit quietly with a soft
painting-brush. While the larvae found the holes and penetrated into
the fruits after minutes, the above of the calyx was closed for 48 h
with a small mesh piece in each contaminated fruit to be sure that
they cannot leave the fruit. Fig. 1 shows some steps of contaminating
the samples to the carob moth larvae. All the samples containing
healthy and unhealthy (contaminated) pomegranates were kept in
the same conditions and temperature about 25 °C before the
experiments.

2.3. Vis/NIR Spectra Acquisition

First experiment was conducted one week after contaminating the
samples to carob moth larvae when the contaminated pomegranates
had no external visual symptoms of carob moth infestation during hid-
den activity of the larvae inside the fruit. Vis/NIR spectra of both blank
and the contaminated pomegranateswere collected using the spectros-
copy set-up containing aUSB2000 spectrometer (Oceanoptics Inc., USA)
with charge coupled device (CCD) detector, a tungsten halogen light
source (LS-1, Oceanoptics Inc., USA) and a fiber optic of P400-7-Vis-
NIR model (Oceanoptics Inc., USA) to acquire the reflectance spectra
of the samples in interactance mode at the range of 500–1000 nm
with 1.5 nm resolution. Data acquisition for each fruit was done at
four positions around and near the calyx (Fig. 2a) with five scans at
each position using OOIBase32 software (Oceanoptics Inc., USA). For
each sample, the mean Vis/NIR spectrum was calculated from a total
of 20 scans and converted to absorbance values (log 1/R). One week
after the first experiment when most of the contaminated samples
had some external visual symptoms of larvae infestation such as spots,
softening the texture or decaying of the pomegranate near the calyx,
the secondexperimentwas conducted for all the samples and the absor-
bance Vis/NIR spectra of them were collected as the same. Therefore,
140 index spectra (20 spectra for the blank samples and 120 spectra
for the contaminated pomegranates containing 60 spectra during hid-
den activity of the larvae inside the fruit and 60 spectra after appearing
the external symptoms of larvae infestation) were acquired from both
healthy and unhealthy samples (Fig. 2b).

2.4. Qualitative Analysis

After spectra measurements, qualitative analyses based on pattern
recognition methods were conducted to assess the feasibility of
Vis/NIR spectroscopy technology for non-destructive detection of
carob moth infestation in pomegranates during hidden activity of the
larvae. To this end and before performing any spectral pre-processing
method, outliers which are the samples containing interferences with
a negative influence on model development were removed [15]. After
running principal component analysis (PCA), they were detected
using the Q-residual versus Hotelling's T2 plot (Fig. 3). The Q-residual
on the ordinate axis describes the sample distance to model. The
Hotelling's T2 explains how well the sample is described by the model
[33]. The red lines in Fig. 3 display the associated critical limits with
significance levels of 5% and the marked samples outside these limits
are the detected outliers. This plot was constructed with the third PC
where total residual variance of PCA model goes to zero with as few
components as possible.

After removing the outliers (13 samples) and to verify the possibility
of clustering of the pomegranate samples in three groups of “Healthy”,
unhealthy without any external symptoms “Unhealthy-A”, and un-
healthy with the external symptoms “Unhealthy-B”, PCA model was
performed on the remaining samples (127 samples) as an unsupervised
pattern recognitionmethod. PCA provides a visual representation of the
relationships between samples and variables and makes insights into
how measured variables cause some samples to be similar to, or how
they differ from each other.

Discriminant analysis (DA), the simplest of all possible classification
techniqueswhich are based on Bayes' formula, as a powerful supervised
pattern recognition method was also used to classify the samples.
Before developing DA model, some pre-processing methods such as
moving average (MA) filter with segment size of five for averaging,
standard normal variate correction (SNV), and first derivative (D1) of
the spectra based on Savitzky-Golay (SG) algorithm with five smooth-
ing points and polynomial order of two were performed for smoothing
and denoising the spectra, normalizing and improving the spectral res-
olution, respectively. The samples of each groupwere randomly divided
into calibration (approximately 75% of the samples) and validation
(the remained 25% of the samples) sets. Therefore, 95 and 32 samples



Fig. 5. The scores plot of PC1 versus PC2 for clustering of the pomegranates into the three
classes of “Healthy”, “Unhealthy-A” and “Unhealthy-B”.
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containing all three groups were selected for calibration and validation
sets, respectively. The calibration set was contained 13, 38 and 44
samples of “Healthy”, “Unhealthy-A”, and “Unhealthy-B” groups, re-
spectively. Moreover, 4, 13 and 15 samples of these three groups were
selected for the validation set, respectively. Then, DA based on PCA
with 5 components using different methods of linear, quadratic and
Mahalanobis were developed for the calibration set without any pre-
processing and with different pre-processing techniques of MA, SNV,
and D1. Finally, the developed models were used to classify unknown
samples (validation set).

All qualitative analyses were conducted using the Unscrambler
software X10.4 (CAMO Software AS, Norway).

3. Results and Discussion

3.1. Spectra Interpretation

Fig. 4 indicates the mean absorbance Vis/NIR spectra of the pome-
granates of “Healthy”, “Unhealthy-A”, and “Unhealthy-B” groups. The
mean spectra for all three groups had decreasing trend in the visible re-
gion related to compounds responsible for the pomegranate color.
There was a peak around 670 nm due to the chlorophyll content of
the fruits [15,18,27,and]. In contaminated samples, it was weaker than
that for the healthy pomegranates. A perceptible peak around 750 nm
was found in “Healthy” and “Unhealthy-A” samples which could be
due to the third overtone of O\\H or the forth overtone of C\\H regard-
ing to overtone distributions of organic bonds presented by Cen and He
[34]. However, it was not perceptible in unhealthy pomegranates with
external symptoms of larvae infestation, “Unhealthy-B”. Therefore, it
Table 1
Results of PCA-DA models for discrimination of “Healthy”, “Unhealthy-A” and “Unhealthy-B” g

Pre-processing DA Calibration set
Correctly classified (%)

Healthy Unhealthy-A Unhealthy

– Linear 69.2 100 100
Quadratic 84.6 97.4 100
Mahalanobis 84.6 97.4 100

MA Linear 69.2 100 100
Quadratic 84.6 97.4 100
Mahalanobis 84.6 97.4 100

SNV Linear 76.9 92.1 100
Quadratic 84.6 89.5 100
Mahalanobis 84.6 86.8 100

D1 Linear 53.8 100 100
Quadratic 61.5 100 100
Mahalanobis 84.6 100 100
was noted that decaying the samples due to larvae activity can make
chemical changes related to C\\H and O\\H bonds. In NIR region,
there was an increasing trend up to 1000 nm for all the spectra because
of the third overtone of C\\H around 850 nm and the second overtone
of O\\H or N\\H around 970 nm. While the absorbance in
“Unhealthy-A” samples was stronger than that in “Healthy” pomegran-
ates in the NIR regionwhich could be due to the softening of the texture
or existence of the larva with the major compositions of water, lipids
and protein [28], it was weaker in “Unhealthy-B” samples may be due
to decreasing themoisture of the sample in 2weeks after contaminating
the samples. It could also be due to the changes in the ratio of other
chemical compounds such as carbohydrates, acid, oil and protein in
pomegranate which are related to C\\H, O\\H or N\\H bonds because
of the larvae's feeding from internal parts of the sample.

3.2. PCA Clustering

Fig. 5 shows the scores plot of the first component (PC1) versus the
second component (PC2) obtained from PCA for clustering of the pome-
granate samples into the three groups. These two PCs summarize more
variation in the data than any other pair of components. Therefore, this
plot can be used to interpret differences and similarities among the
samples. The closer the samples are in the scores plot, the more similar
they are with respect to these two PCs concerned. On the contrary,
samples far away from each other are different from each other. As it
can be seen in Fig. 5, PC1 and PC2 explained 84% and 14% of all data
variance, respectively. The three groups of “Healthy”, “Unhealthy-A”,
and “Unhealthy-B” samples are also seen in different colors and sym-
bols. The PCA clustering result indicates a clear discrimination between
the groups of “Healthy” and “Unhealthy-B” as well as between the clas-
ses of “Unhealthy-A”, and “Unhealthy-B”. Therefore, the contaminated
samples with the external symptoms of carob moth larvae infestation
were well separated from the healthy and contaminated pomegranates
with no external symptoms during the hidden activity of the larvae.
However, the samples of “Healthy” and “Unhealthy-A” classes had
some overlapping and were not well distinguished. The similarities
between these two groups could be due to weak or slow activity of
the larvae in some contaminated fruits whichmakes themmore similar
to healthy samples in terms of spectral information. Therefore, a power-
ful classifier of PCA-DA as a supervised pattern recognitionmethod was
also applied to make separations more clear.

3.3. PCA-DA Classification

Table 1 indicates the results of PCA-DA models developed based on
different methods of linear, quadratic and Mahalanobis distance with
different pre-processing methods for discriminating the pomegranates
in three groups of “Healthy”, “Unhealthy-A” and “Unhealthy-B”.
roups of the samples.

Validation set
Correctly classified (%)

-B Total Healthy Unhealthy-A Unhealthy-B Total

95.8 100 76.9 100 90.6
96.8 100 76.9 100 90.6
96.8 100 76.9 93.3 87.5
95.8 100 76.9 100 90.6
96.8 100 76.9 100 90.6
96.8 100 76.9 93.3 87.5
93.7 100 69.2 100 87.5
93.7 100 69.2 100 87.5
92.6 100 69.2 100 87.5
93.7 100 84.6 100 93.8
94.7 100 84.6 100 93.8
97.9 100 76.9 100 90.6



Table 2
Confusion matrix of classification using the best PCA-DA calibration model developed based on Mahalanobis method and D1 pre-processing.

Class Actual (calibration set) Actual (validation set)

Healthy Unhealthy-A Unhealthy-B Healthy Unhealthy-A Unhealthy-B

Predicted Healthy 11 0 0 4 3 0
Unhealthy-A 2 38 0 0 10 0
Unhealthy-B 0 0 44 0 0 15
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According to Table 1, all the developed models of PCA-DA based on all
three methods of linear, quadratic and Mahalanobis had excellent
ability to discriminate the samples into the three groups. The total per-
centage of correctly classified samples was above of 92% for all the cali-
bration models developed using the different pre-processing methods.
Therefore, it was concluded that Vis/NIR spectral information of the
pomegranates around and near the calyx combined with supervised
pattern recognition of PCA-DA can be useful for non-destructive detec-
tion of internal carobmoth infestation in the pomegranates during hid-
den activity of the larvae inside the fruits without any symptom until
the appearance of the symptoms on them. The results of classification
using the calibration models developed with pre-processing of MA
were similar to those achieved with no pre-processing method. In
these calibration models, methods of quadratic and Mahalanobis dis-
tance could model the classes better than linear method (accuracy of
96.8% versus 95.8%). It was noted that the variability within the groups
is not the same structure. The classification results indicated that SNV
pre-processing method decreases the percentage of correctly classified
samples of “Unhealthy-A” group and the total percentage of correctly
classified pomegranates. Moreover, the calibration models of PCA-DA
based on linear and quadratic methods developed after pre-processing
of D1 caused decreasing in thepercentage of correctly classified samples
of “Healthy” group and the total percentage of correctly classified
pomegranates in comparison with the results obtained from the
models developed with no pre-processing or after MA pre-processing.
However, the best results of classification were achieved using the
calibration model of PCA-DA developed based on Mahalanobis method
and D1 pre-processing. The total percentage of correctly classified
samples with the best calibration model was 97.9%. This conclusion
was in agreement with the results reported by Moscetti et al. [28]
who assessed the feasibility of NIR spectroscopy to detect hidden insect
damage in chestnuts using a genetic algorithm in combination with a
linear discriminant analysis. They found that the best classification of
Fig. 6. Discrimination plot of the best PCA-DA dev
the infested and non-infested chestnuts can be achieved using D1 pre-
processing method based on SG algorithm.

The confusion matrix of the best classification model is presented in
Table 2. All the “Unhealthy-A” and “Unhealthy-B” samples in calibration
setwere correctly attributed to their groups. Only 2 sampleswith actual
class of “Healthy” in calibration set were misclassified and predicted as
“Unhealthy-A” group. Therefore, the percentage of correctly classified
samples of “Healthy” group was 84.6%.

The discrimination results of the best PCA-DA developed model are
shown in Fig. 6 for the calibration set. Every sample is displayed,
color-coded by class, and the axes are for two classes of “Healthy” and
“Unhealthy-A” in the model. Samples lying close to zero for a class are
associated with the class.

As it can be seen in Table 1, all the calibration models of PCA-DA
developed based on different methods of linear, quadratic and
Mahalanobis with different pre-processing techniques had excellent
ability to discriminate the unknown samples of the validation set into
the three groups of “Healthy”, “Unhealthy-A” and “Unhealthy-B”. The
total percentage of correctly classified unknown samples was above of
87.5% for all the models developed using the different pre-processing
methods. According to the confusion matrix (Table 2), all the “Healthy”
and “Unhealthy-B” samples in validation set were correctly classified to
their groups. However, 3 samples with actual class of “Unhealthy-A” in
validation set were predicted as “Healthy” group. Therefore, the
percentage of correctly classified samples of “Unhealthy-A” group was
76.9%.

Consequently, the results indicated the potential of interactance
Vis/NIR spectroscopy at the range of 500–1000 nm combinedwith pat-
tern recognition method of PCA-DA based on Mahalanobis distance
method for non-destructively screening the pomegranates to detect
carobmoth infestation during hidden activity of the larvae. This conclu-
sion was in agreement with the results reported by Wang et al. [26,27]
who assessed the feasibility of Vis/NIR spectroscopy to detect internal
eloped model based on Mahalanobis method.
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insect-infested jujubes using Mahalanobis discriminant analysis and
found the best results in intractance mode.

4. Conclusion

The feasibility of using visible/near-infrared (Vis/NIR) spectroscopy
combined with pattern recognition methods was investigated for
detection of carob moth infestation in pomegranates (cv. Malas Saveh)
during hidden activity of the larvae. The achieved results confirmed the
capability of this technology for discrimination of healthy pomegranates
from contaminated fruits to carob moth larvae with and without exter-
nal symptoms of larvae infestation. Therefore, Vis/NIR spectroscopy can
be useful for fast, low-cost and non-destructive screening and prelimi-
nary health control of the pomegranates. Nevertheless, further works
should be considered on other varieties of pomegranates at different re-
gions which naturally contaminated to carob moth larvae for adapting
the Vis/NIR spectroscopy to detect carobmoth infestation during hidden
activity of the larvae.
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